

The DEPFET Pixel Detector (PXD) for BELLE II

Development of High-Resolution Pixel Detectors and their Use in Science and Society Bad Honnef, Germany

Paola Avella for the DEPFET collaboration

- SuperKEKB and the BELLE II experiment
- The BELLE II vertex detector
- The DEPFET working principle
- The readout electronics
- DEPFETs for BELLE II technology
- Radiation damages
- Summary

Paola Avella, MPI for Physics - HLL

mpi

The BELLE II experiment

Paola Avella, MPI for Physics - HLL

mpi halbleiterlabor

The *Lorentz boost* allows measuring decay time differences, difficult to measure, via spatial separation of the vertices.

mpi halbleiterlabor

• The BELLE II vertex detector

+ + + mpi + halbleiterlabor

- > 2 DEPFET pixel detector (PXD) layers
- 4 Double Sided Si-Strip Detector
 (DSSD) (SVD) layers
- → Improvement in the impact parameter resolution

- Fast detector to keep small occupancy
- High spatial resolution
- Very short distance from the IP
- Minimum thickness

The BELLE II PXD layout

	Inner layer (L1)	Outer layer (L2)
# modules	8	12
Distance from IP (cm)	1.4	2.2
Thickness (µm)	75	75
# pixels	768 x 250	768 x 250
Total # pixels	3.072 M	4.608 M
Pixel size (µm ²)	55 x 50 60 x 50	70 x 50 85 x 50
Sensitive area (mm ²)	44.8 x 12.5	61.44 x 12.5

The DEPFET PXD half ladder

 Decrease of the overall channel readout time

mpi halbleiterlabor

 Charge induced by hits does not spread over too many pixels → better track reconstruction accuracy

The DEPFET working principle

Depleted p-channel FET

- fully depleted bulk
- potential minimum for electrons
- the charges collected in the internal gate modulate the transistor current

halbleiterlabor

- internal amplification g_a
- non destructive readout
- low power consumption
- the charge stored in the internal gate is removed by a "reset" contact

- 25 photolithographic masks and 9 implantations
- Extremely complex technology involving wafer bonding, double poly silicon, triple metal layer, backside thinning and double sided wafer processing
 - Source contact common to 2 pixels
 - Clear shared by 4 pixels
 - \rightarrow very compact design

The DEPFET matrix and the rolling shutter mode readout

- High readout speed required to keep the number of hit pixels low at each readout frame → 20 µs → 100 ns/electrical row
- The 4-fold readout is used, for which:
 - 4 rows are connected in parallel to gate and clear
 - The number of drain lines increases of the same factor
- Three different ASICs to readout the matrix (made in radiation hard technology):
 - SWITCHER
 - DCD
 - DHP

The SWITCHER(18G)

3.62mm

- Mounted on the 2 mm wide and 300 μm thick inactive edge rim of the module

mpi halbleiterlabor

- Provide fast voltage pulses up to 20 V to activate gate rows and to clear the internal gate
- Support gated mode operation
- equipped with JTAG for configuration and debugging
- Each chip has 64 drivers for both gate and clear channels → address 32 matrix segments
- 768 rows → 192 electrical rows → 6 ASICs needed per module

The Drain Current Digitizer (DCD)

 256 analog channels with 1 input and 2x8 bits output ADCs that are interleaved
 → 4 DCDs/half module to readout 1000 pixels

halbleiterlabor

- Tasks of the analog inputs:
 - Keeps the columns line potential constant
 - Compensate for pedestal current variation
 - Amplify the signal
 - Shaping for noise reduction
 - Programmable gain and BW

The Data Handling Processor (DHP)

- + + + + mpi + halbleiterlabor
- One-to-one mapped to the DCD
- Data processing steps:
 - Pedestal correction → the signal offset due to pedestal, periodically determined, is stored in the DHP
 - Common mode correction → signal offset found in all raw data values sampled at the same time
 - Data reduction using the zero suppression → the pedestal and common mode corrected values are compared to a programmable threshold → only real data are transmitted
 - Triggered readout scheme introduces further
 data reduction
 - Control signal for the other ASICs

The readout electronics

- FLEX kapton cable 49 cm long
- Patch Panel (PP) for power filtering and impedance
- Data Handling Hybrid (DHH) for interconnection of the half-ladder to the outside world \rightarrow
 - Clock signal from the BELLE II environment
 - Slow control master for the ASICs
 - Multiplexing data from DHP into optical link
 - Compute Nodes (CN) ۲ ATCA/ONSEN for tracking information from the SVD and definition of ROI within the PXD data

- Wafer bonding and thinning of top layer
- Sensor fabrication on SOI
- Etching of the handle wafer
- In house technology

→ The **DEPFET thickness is hence a free parameter** which can be adjusted depending on the needs of the experiment → in BELLE II 0.2% X_0 of the full detector

Radiation damages in DEPFETs

- The main cause of radiation damages in DEPFET detectors is due to *surface damages* → Increase of the threshold voltage → the electronics can cope with this!
- Bulk damages due to relatively low energy electrons could deteriorate the S/N \rightarrow negligible effect

DEPFET pixelated detector proof of principle

Paola Avella, MPI for Physics - HLL

- The DEPFET PXD detector promises an excellent spatial resolution of ~ 15 μm and an occupancy as low as 1%, due to a fast readout (50kHz) and a huge number of pixels (~ 8Mpix);
- The *technology* used for the production of the DEPFET PXD is very complex and yet fully functional;
- The SOI technique allows building a full Silicon module and the control on *the thickness* of the DEPFET ladders, thinned down to 75 μ m (0.2% X₀), minimising multiple scattering;
- The *power consumption* of a full sensor is ~ 3W in the acceptance region and can be easily handled with moderate air cooling;
- Considering the contribution from the readout electronics as well, the DEPFET PXD is characterised by a very high *SNR* of the order of 40;
- The DEPFET PXD has been proven to be *radiation tolerant* up to doses of the order of 10 Mrad.

Thank you!

Paola Avella, MPI for Physics - HLL

Development of High-Resolution Pixel Detectors and their Use in Science and Society 23

Backup slides

Charge collection in a DEPFET

mpi ∕halbleiterlabor

The CLEAR mechanism

• The n⁺ implant is a potential minimum for e⁻

halbleiterlabo

- The charge stored in the internal gate is removed applying a high positive voltage
- The e⁻ drift towards the clear contact and are then removed
- p-doped region used to shield the clear contact
- *Clear-gate structure* used to lower the potential barrier between the internal gate and the clear

The internal amplification and the readout methods

- The internal amplification g_{α} is defined as the increase in the drain current I_{ds} per e⁻ in the internal gate
- I_{ds} increases linearly with Q_{sig}
- $g_{\rm q}$ and the transconductance $g_{\rm m}$ are proportional
- If I_{ped} is the current measured in absence of charges, the signal is given by $I_{sig} = I_{ds} - I_{ped}$

27

 $g_q = \frac{\partial I_{ds}}{\partial Q_{sig}}$

$$g_q = \frac{g_m}{C_{ox}}$$

$$\Rightarrow \quad g_q = \frac{g_m}{C_{ox}}$$

Development of High-Resolution Pixel Detectors and their Use in Science and Society

Electron trajectories within the DEPFET

- PXD sends ~7MB/event at 30kHz rate and 1% occupancy to DAQ
- A factor of 10 data reduction is performed using SVD

The readout chain: from the module to the outside world

Radiation damages

Surface damages

- Trapped oxide charge
 - \rightarrow shift of V_{thr} to negative values
- Interface traps :
 - Trapping of additional charges
 → V_{thr} to negative values
 - Degradation of charge carriers mobility in the channel
 - \rightarrow decrease of g_q

Bulk damages

- Formation of crystal defects (vacancies and interstitials) by PKA:
 - Increase of leakage current
 - \rightarrow degradation of S/N
 - Trapping/de-trapping of charge carriers
 → fluctuations in the depletion voltage
 - Change in effective doping